An electrophysiological correlate of protein kinase C isozyme distribution in cultured cerebellar neurons.
نویسندگان
چکیده
Protein kinase C (PKC) is a family of at least seven closely related molecules (isozymes) that vary in terms of their requirements for activation and their distribution among cells of the brain. A striking example of this differential distribution is seen in the cerebellum, where Purkinje cells express PKC-I, an isozyme that is strongly activated by both phorbol ester (PE), and low doses of cis-unsaturated fatty acid (c-UFA), while granule cells predominantly express PKC-II, an isozyme that is strongly activated by PE but not c-UFA. Both Purkinje and granule cells have large, easily recorded voltage-gated K currents. These currents are attenuated by PKC activators in several other varieties of neuron. We hypothesized that the effects of these two PKC activators would be predicted by the distribution of the relevant PKC isozyme, and that the delayed outward rectifier current, IK, would be attenuated by both PE and c-UFA in Purkinje cells, but only by PE in granule cells. This hypothesis was confirmed in perforated-patch recordings. The attenuation produced by both activators could be blocked by application of a specific PKC inhibitor, RO-31-8220, and could not be mimicked by inert forms of PE or c-UFA. To our knowledge, this study represents the first report of an electrophysiological correlate of PKC isozyme distribution.
منابع مشابه
An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 9 شماره
صفحات -
تاریخ انتشار 1992